	[Lesson Title]				TEACHER NAME Julie Thumann	PROGRAM NAME Cincinnati City Schools	
	[Unit Title] Linear Functions Interactive Notebook				NRS EFL(s) 3-6	TIME FRAME 4-7 classes	75 minutes each)
	OBR ABE/ASE Standards - Mathematics						
	Numbers (N)		Algebra (A)		Geometry (G)	Data (D)	
	Numbers and Operation		Operations and Algebraic Thinking		Geometric Shapes and Figures	Measurement and Data	
	The Number System	N.4.1	Expressions and Equations	$\begin{aligned} & \text { A.4.9 } \\ & \text { A.4.10 } \\ & \text { A.5.6 } \\ & \text { A.5.9 } \\ & \hline \end{aligned}$	Congruence	Statistics and Probability	
	Ratios and Proportional Relationships	N.3.32	Functions	A.4.12 A.4.13 A.4.14 A.4.15 A.5.11 A.5.13 A.6.7	Similarity, Right Triangles. And Trigonometry	*Benchmarks priority benchm Curriculum Alig the Teacher R complete list o and related Oh	entified in red are arks. Please see the nments available on source Center for a priority benchmarks ABLE lesson plans.
	Number and Quantity				Geometric Measurement and Dimensions		

- This lesson begins with a review of prior knowledge; referencing integers and coordinate plane

INSTRUCTIONAL ACTIVITIES

1. Pass out Integers Foldable Layered-Look Book handout.
a. Model folding instructions and provide supplies for students to create the foldable.
b. Complete the Integers Foldable Layered-Look Book as a class.
i. Model how to solve example problems.
ii. Collaborate for writing the rule summary on the bottom of each page.
iii. Glue or staple the completed Integers Foldable Layered-Look Book into your notebook.
2. Interpret Slope and Linear Functions
a. Introduction:
i. Slope, a measure of the steepness of a line, is the ratio of vertical change to horizontal change (or rise over run).
ii. We are able to measure slope on a coordinate plane.
iii. Let's discuss a real-life example of a coordinate plane - city streets. In many cities, streets that run east and west are named with numbers, and streets that run north and south are named with letters. Due to this convenient naming system, it is easy for people to navigate in an unfamiliar city and find their locations.
iv. Let's take a look at a coordinate plane.
b. Pass out Graphing Ordered Pairs handout.
i. Label as a class. Discuss how grid is similar to the city street example - the east and west is the horizontal x-axis, and the north and south is the vertical y-axis. Ask the class if they have seen this grid in other real-life situations?
ii. Glue or staple Graphing Ordered Pairs handout into your

RESOURCES

Notebooks or folders for student use
Student copies of Integers Foldable Layered-Look Book handout (attached)

Stapler for student use

Glue sticks for student use

Projector/ability to project
Chalkboard or whiteboard

Student copies of Graphing Ordered Pairs (attached, 2 handouts per page)

Student copies of Interpreting Slope From a Graph or Table booklet (attached)

Assessment-on-a-stick for student use (attached)
Student copies of Linear Relationships graphic organizer (attached)
West Virginia Board of Education: Frayer Model. (n.d.). Retrieved from
https://wvde.state.wv.us/strategybank/FrayerModel.htmI

notebook.

c. Now, add the lesson's vocabulary words and definitions in your notebook:
i. Coordinate plane - a grid formed by the intersection of a horizontal number line and a vertical number line
ii. Quadrant -1 of the 4 regions of the coordinate plane formed by the intersection of the x and y axis
iii. Ordered pairs - a pair of numbers (x, y) that is used to describe the location of a point on a coordinate grid
iv. Slope - the ratio of vertical change to horizontal change
v. Unit rate - a rate that compares to one unit, such as mile per gallon
d. Next, we will begin a new page in the notebook titled Interpreting Slope From a Graph or Table
3. Interpreting Slope From a Graph or Table handout
a. Pass out Interpreting Slope From a Graph or Table handout. Model folding instructions and provide supplies for students to create the foldable.
i. This handout will need to be folded vertically and then accordion-style.
ii. Glue or staple Interpreting Slope From a Graph or Table handout into your notebook
b. Add the definition for slope to your notebook:
i. Slope should always be reported in the proper units:

Dependent variable units (y-axis)

Independent variable units (x -axis)
ii. The slope of the line represents the ratio of change in the dependent variable/y-axis/rise to the change in the independent variable/x-axis/run.
c. Whole class discussion and completion of Slope From a Graph or Table handout.
i. Write on the board, "We will now be able to answer the

Student copies of Math Talk Bookmark (attached) Student copies of Math Talk Bookmark (attached)
Math Talk Bookmark. (n.d.). Retrieved from https://www.pinterest.com/pin/30751209929886153/

Student copies of Linear or Nonlinear Card Sort (attached)

Student copies of All Linear Patterns handout (attached, 2 per page)

Using the Think-Pair-Share Technique-ReadWriteThink. (n.d.). Retrieved from
http://www.readwritethink.org/professional-development/strategy-guides/using-think-pair-share30626.html

Student copies of Slope and Intercept Practice foldable (attached)

Student copies of X-Intercept (attached)

Student copies of Y-intercept (attached)

Student copies of the Linear Equations Flippables (attached)

Common core achieve: Mastering essential test readiness skills (Mathematics). (2015). Columbus, OH: McGraw-Hill Education.

	question how do you calculate the rate of change on a linear model?" The model today is a table or graph. Refer to the completed Slope From a Graph or Table handout for class examples. i. Model the first example, Paul's Job. Check student understanding using the Happy/Sad Face Assessment-on-aStick or Thumbs Up/Thumbs Down. ii. Have students complete the remaining examples (Oil in the Oil Tank, Todd's Account, Delivery Service Charges, Donna's Yard Service) and review answers as a class. 4. Analyze Linear and Nonlinear Relationships a. Pass out the Linear Relationships graphic organizer to define linear. i. Explanation of a linear relationship will be defined and completed together - write the template on the board or project the template on a whiteboard. i. As you complete the graphic organizer with the class, ask students to also explain nonlinear (use phrases from the Math Talk Bookmark to solicit student responses and check student understanding). b. Linear or Nonlinear Card Sort i. Pass out Linear or Nonlinear Card Sort envelopes. 1. Instruct students to make a t-chart in their notebooks. Label one side of the t-chart "Linear" and the other side of the t-chart "Nonlinear" 2. Each envelop should contain 4 graphs and 4 tables. Students are to identify each graph and table as linear or nonlinear and glue or tape the graph or table into the correct column in their notebook. 3. Walk around the room to observe student work and answer student questions (use phrases from the Math Talk Bookmark to solicit student responses and check student understanding). ii. Review correct answers.	Zike, D. (n.d.). Teaching Mathematics with Foldables. Retrieved from https://blogs.edutech.nodak.edu/badlandsreadingcouncil /files/2012/03/math-foldables.pdf

	c. Refer to completed, Slope and Intercept Practice foldable. d. Write these ordered pairs on the board: $(-2,-2)$ and $(1,4)$. Have students plot the points and then record the x-intercept and the y intercept and the slope. e. Follow the same procedure for the next ordered pairs: $(-4,0)$ and (0,1) f. Discuss the difference between a positive and negative slope. The first example is a positive slope - the line rises from the left to the right and the second example has a negative slope - lines that fall from left to right. 7. Write the Equation of a Line a. The equation of a line can be written many different ways. You can use given information about the line to determine the best way to write the equation. b. A good example of this is a cell phone bill. Some cell phone companies charge an initial fee and then add additional changes for each byte of data used. To find the total cost of your monthly bill you use the same formula used to write the equation of a line. If you were to graph this information, your graph would be a line that describes the relationship between the data used and the total monthly cost of your cell phone. c. Today we will use two different formulas to write an equation. i. Pass out the Linear Equations Flippables. ii. Model folding instructions and provide supplies for students to create the foldable. iii. Present and explain examples for each formula. Then provide more examples on the board and remind students to write the examples in their notebooks. Students will use the Linear Equations Flippables for reference. iv. Examples for Slope-Intercept Form: $y=m x+b$ 1. Write the equation of the line with the slope of -5 and y-intercept of 4 . a. Step 1: identify $m=-5, b=4$

	b. Step 2: use these values to write the equations: $y=5 x+4$ 2. A line has a slope of 3 and contains the points $(2,7)$ a. Step 1: $m=3, x=2, y=7$ b. Step 2: solve to find the value of b. $\begin{aligned} & 7=3(2)+b \\ & 7=6+b \\ & 1=b \end{aligned}$ c. Therefore: $y=3 x+1$ v. Example for the Point - Slope Form: $y-y=m(x-x)$ 1. A line has a slope of 1 and contains the point $(4,-3)$ a. Step 1: Substitute the values: $y-(-3)=1(x-4)$ b. Step 2: $y+3=x-4$ c. Step 3: Subtract 3 from both sides: $y=x-7$ vi. Example for Slope Formula: write an equation given two points 1. A line contains the points $(4,-4)$ and $(3,0)$ a. Step 1: Find the slope using the Slope Formula: $m=-4-0=-4=-4$ 4-3=1 b. Step 2: Now that you know the slope you may use either formula to write the equation, and choose only one of the given points. $\begin{aligned} & Y=m x+b \\ & 0=-4(3)+b \\ & 0=-12+b \\ & 12=b \end{aligned}$ c. Step 3: Plug in for m and b $Y=-4 x+12$ 8. Have students complete Assessment \#1 (Vocabulary Review, Skill Review,

Adding Integers with the SAME SIGN

Example 1:	Model:
$5+7=$	
Example 2:	
$-5+(-7)=$	Model:

Multiplying \& Dividing Integers with DIFFERENT SIGNS

Multiplying	Dividing
Example 13:	
$-4(9)=$	Example 15:
	$-49 \div 7=$
Example 14:	
$8(-7)=$	Example 16:
	$\frac{64}{-4}=$

Summary:
\times Multiplying \& Dividing \div

Rule: To subtract an integer,

Example 5:

$$
12-(-7)=
$$

Example 6:

$$
-9-4=
$$

Example 7:

$$
-15-(-3)=
$$

Example 8:

$$
7-10=
$$

Summary:
-Subtracting -

Multiplying \& Dividing Integers with the SAME SIGNS

Multiplying	Dividing
Example 9:	Example 11:
$6(8)=$	$24 \div 3=$
Example 10:	
$-11(-9)=$	$\frac{\text { Example 12: }}{}$

Addins Integers with DIFFERENT SIGNS

Example 3:	Model:
$-5+7=$	Model:
Example 4:	
$5+(-7)=$	

Summary:

+ Adding +

Adding Integers with the SAME SIGN

| Example 1: |
| :--- | :--- | :--- |
| $5+7=12$ |

Multiplying \& Dividins Integers with DIFFERENT SIGNS

Rule: To subtract an integer,

"Keep, Change, Change" or "Add the Opposite"

Example 5:

$$
12+(+7)=19
$$

Example 6:

$$
-9+-4=-13
$$

Example 7:

$$
-15+(+3)=-12
$$

Example 8:

$$
7+-10=-3
$$

Summary: When subtracting, change the subtraction sign to addition and switch the sign of the next integer. Now it's an addition problem and you will use the same rules as we did for addition.

> -Subtracting -

Multiplying \& Dividing Integers with the SAME SIGNS

Multiplying	Dividing
Example 9:	
$6(8)=48$	Example 11:
	$24 \div 3=8$
Example 10:	
$-11(-9)=99$	$\frac{\text { Example 12: }}{}$

Adding Integers with DIFFERENT SIGNS

Example 3: $-5+7=2$	Model:
$5+(-7)=-2$	Model:
Example 4:	
5	

Sum mary: If the signs are the same, add and keep their sign. If the signs are different, find the difference, then take the sign of the integer with the larger absolute value.

+ Adding +

© Lisa Davenport 2012

http://www.teacherspayteachers.com/Store/Lisa-Davenport

Directions for putting together the integer foldable!

Step1:

Print pages 1 \& 2 front to back as shown:

Print pages 3 \& 4 front to back as shown:

Step 2: Place the pase that says "Multiplying \& Dividins" (at the very bottom) face up on your desk.

Step 3: Place the pase that says "Subtractins" (at the very bottom) face up on top of the other page, so that you can just see the bottom of the original page, as shown:

Step 4: Fold over both pases so that "Addins" is just above where is says "Subtracting" and the "Integers" title is at the very top.

Step 4: Staple and you're done!

GRAPHING ORDERED PAIRS

Ω

Weight （in pounds）	0.0	0.5	1.0	1.5	2.0
Length of Spring （in inches）	4.0	4.8	5.6	6.4	7.2

Yue』 I！O U！I！O

ұunoכəъ s，ppol

00＇S\＆\＄	†
00．8て\＄	ε
00＇Iて\＄	乙
00＇七I\＄	I
อб．лечว	

Interpeeting SLDPE
 From AGraph OR TAbLE

Linear Relationships

x	y
13	7
15	10
17	13
19	16

x	y
13	7
15	10
17	13
19	16

x	y
13	7
15	10
17	13
19	16

x	y
0	1
2	11
3	17
5	26

x	y
0	1
2	11
3	17
5	26

x	y
2	5
6	10
14	20

x	y
2	5
6	10
14	20

\boldsymbol{x}	\boldsymbol{y}
2	5
6	10
14	20

x	y
1	1
2	4
4	16
8	64

The function $f(x)$ is linear.

x	$f(x)$
-3	8
-1	11
1	14

What is the value of $f(5)$?
F - 5
G 3
H 17
J 20
The function $f(x)$ is linear.

\boldsymbol{x}	-10	-5	0	5
$\boldsymbol{f}(\boldsymbol{x})$	-4	-1	2	5

What is the value of $f(15)$
F 15
H 11
G 12
J 8

The function $f(x)$ is linear.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-9
-1	-5
0	-1

What is the value of $f(2)$?
A -6
B 2
B 2
C 3
D 7

The function $f(x)$ is linear.

x	$f(x)$
-3	8
-1	11
1	14

What is the value of $f(5)$?
F - 5
G 3
H 17
J 20

x	-10	-5	0	5
$f(x)$	-4	-1	2	5

What is the value of $\boldsymbol{f}(\mathbf{1 5)}$
F 15
G 12
What is the value of $f(15)$
$\begin{array}{lll}\text { F } & 15 & \text { H } \\ \text { G } & 11 \\ \text { G } & 12 & \text { J } \\ 8\end{array}$
What is the value of $f(15)$
F $\begin{array}{llr}15 & \text { H } & 11 \\ \text { G } & 12 & \text { J }\end{array}$
What is the value of $f(15)$
F 15
What is the value of $f(15)$
F $\begin{array}{llr}15 & \text { H } & 11 \\ \text { G } & 12 & \text { J }\end{array}$

A functional relationship is shown in this table.

\boldsymbol{x}	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	-1	1	3	$?$

What is the value of the function when x is 3 ?
A 3
B 4
C 5
D 6

The function $f(x)$ is linear.

The function $f(x)$ is linear.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-9
-1	-5
0	-1

| :ұdəэュəృu\|-人 :7dəэљәұul-X :ədo|S |
| :---: |

Slope and
Intercept Practice

[^0]

[^1]
X-Intercept

The point where a graph crosses the \qquad -

X-Intercepts happen when the \qquad is \qquad .

To find the x -intercept from an \qquad replace \qquad .
(or ___) with \qquad and solve for \qquad
(or \qquad) with \qquad and solve for

$$
=
$$ _, re \qquad .

The point where a graph crosses the \qquad .

X-Intercepts happen when the \qquad is \qquad

The point where a graph crosses the \qquad .

X-Intercepts happen when the \qquad is \qquad .

To find the x-intercept from an \qquad replace \qquad (or \quad _) with and solve for \qquad .

x-ntercept

The point where a graph crosses the \qquad -.

X-Intercepts happen when the \qquad is \qquad -.

To find the x-intercept from an \qquad replace \qquad -10 \qquad) with \qquad and solve for \qquad replace
To find the x-intercept from an \qquad replace \qquad - (or) with \qquad and solve for \qquad -.

X-Intercept

The point where a graph crosses the \qquad -.

X-Intercepts happen when the \qquad is \qquad -

To find the x-intercept from an \qquad replace \qquad

- (or \qquad) with \qquad and solve for
F _.
\qquad - - - - - -

Linear Equations

3: staple flippable together on its left edge.

$\begin{aligned} & y \\ & \text { from } \\ & \text { given } \\ & (x, y) \end{aligned}$	$\underset{\text { mfor }}{\text { for }}$		
"Find the equation of the line with slope -4 that passes through $(3,9)$."$y-9=-4(x-3)$			
x from given (x, y)			

[^0]: Slope:
 X-Intercept:
 Y-Intercept:

[^1]: Slope:
 X-Intercept:
 Y-Intercept:

